
Y/ -

LASER MARKSMANSHIP
POTENTIAL EVALUATION:

MATH MODELING AND
EXPERIMENTAL VERIFICATION

00

0 by
"qtq Ronald L. iF-tillijps
,M Larry C. Andrts ws

2

FINAL REPORT

PREPARED FOR

U.S. ARMY PROJECT MANAGER FOR TRAINING DEVICES

located at
NAVAL TRAJNING EQUIPMENT CENTER (NTEC)

ORLANDO, FLORIDA 32813

by

ENGINEERING AND INDUSTRIAL EXPERIMENT STATION
COLLEGE OF ENGINEERING

UNIVERSITY OF CENTRAL FLORIDA

JULY1980 /A5480
I ,,•! • o+ (+,+.91



DISCLAIMEP

The contents of this publication are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

Citation of manufacturer's or trade naies does not institute an official
endorsement or approval of the use thereof.

Destroy this report when no longer needed. Do not return it to the
ori.ginator.



SECUV.4ITY CLASSIFICATION OF THIS PACE (When rl.,e Entered)

R/ EP11R1T, DOCUMENTATION PAGEREDISUCON

2. TGADT ACESO NO.~O 3.RCENT'$CATALOG NUMuER

-, . "lYLE (and 5,TP FRPR,ý!RO OEE

Laser Marksmanship PotentialFiaR/I

Evaluat~ion: Mahi Modl l ng and3 -9- -O O P

Exeimna Peiiain .FERFORMINGl-r ORAIAIO AEAD DRS 0.PORMELMN.POJC.TS

7. A 4.AREAC &ORK UNIT NUMINER~S

Engineering & Industrial Experiment StationARAAWK NTNUBS

College of Engineering 62-727A230
...Jnive~raitv of Central Vlnrvian nrla1nA'n r! 12

$I. N IROLLI A E AN AAB DDRESS // F2 C~VA#

rongro aining Devices JU2y 1080j
United States Army 13. NUMBER Of PAGES

Or~lando, Florida 32813 305646-5771 90
14. ONIT9.RINO\,AGENCY NAME II ADORESS(lI dilterent hos Ceniralling Office) IS. SECURITY CLASS. (fa ltile report)

/< Unclassified'<li-iISO. DECLASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Popoff)

Approved for public release; distribution unlimited

17. OIS"RIUUTION STATEMENT (of the abstract onlov to &ilock ",. it different from Popoff)

III. SUPPLEMENTARY NOTES

111. KEY WORDS (Conltinua oni t*V*PO side It necessary and idenitfy' by block number)

Trainer MILES Propagation Lognormal
Weapons Decoding Probability K-distribution
Tactical Atmosphere Moments Turbulence
Laser Model Scintillation

20. ABSTRACT (Continume an reverse side Of nocovosov OW. Identify 67' block number)

-An analysis of the potential of using MILES systems for long range gunnery
training was performed. The analysis centered on the evaluation of the design

equations used for the MILES system design. Experiments were conducted at

Kennedy Space Center which showed the MILES propagation equations to be

accurate at only short ranges i.e. for distances only up to 180 meter~es. New

math models were developed for the propagation of laser light over the long

ranges which would be used in gunnery training. These math models were verifie

,itt the Kennedy Space Center experiments.

DD IF OA41 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 102*14* 502SECURITY CLASSIFICATION OF THIS PAGE (When Doese



t.IJ41TY CLASSIFICATION OF THIS PAGE(When Data Enteted)

An acurate analysis was also performed on the decoding technique of Binary

Union Decoding used in the MILES Pystem. This decoding technique waa designed

to defeat the laser signal fading effects of atmospheric turbulence. At long

ranges the Binary Union Decoding technique proved to be less effective than at

short ranges.

S

I V-

SErCURITY CL•A$SIFICATION OF THIS PAOF('W7•ln Datal Bnce,-ed)



I
ACKNOWLEDGEMENT

I The authors wish to thank Mr. Art Weeks and Mr. Madjid Belkprdid

who both worked long hours on this project. Also we would like to

I thank Mr. David Douglas who developed many unique and creative

electronic circuits used in the experimental portiou of the project.

f We are also undebted Lo the offlcialz of Kennedy Space Center and to

the Manager of the Space Shuttle Landing Faculty, Mr. Billie L.

Study, for their cooperation during our experiments at the Shuttle

Landing Faculty.

I

~I,

I
II

Im m•••m



SI

I
TABLE OF CONTENTS

I. INTRODUCTION ......... ....................... .. ... 1

jA. Background ........ ..................... .1.... I

I1. ATMOSHPERIC MODEL .................... 4

A. The Refractive-Index Structure Parameter ... ...... 4

III. OPTICAL INTENSITY FLUCTUATIONS ......... .............. 8

A. Probability Distribution of Log-Intensity ........... 10
B. The Short-Range Approximation -. ....... ......... 14

IV. EXPERIMENTAL MEASUREMENTS ..... ........ ........... 16

A. Experiment .......... ..................... .... 16

B, Results ........... ...................... .... 23

V. A NEW THEORE"TICAL MODEL FOR INTENSITY FLUCtUATiONS . . . 28

A. Development of the PDF ...... ................ ... 30
B. Theoretical Moments ................. 34
C. Compvrison of Moments with Data .... ........... 37

VI. BINARY UNION DECODING .............. ................. 44

A. Case I All Bits Equal Probability ........... 47
B, Case 11 - Half Word Fade Time ... ........... .... 52
C. Case III - Full Word Fade Time - Half '.1crd Lost . . . 54
D, Case IV - Third of a Word Faded .... .......... ... 58
E. Case V - All Bits Equal Probability ..... ........ 58
F. Case VI - One Half Word Fade ................... ..*59
G. Case VII - One-Third of a Word Faded ..... ........ 60

VII, DISCUSSION ...... ..... ........................ .... 62

A. Completed Modelling Tasks . . . ........... 62
B. Evaluation of MILES Equipment ..... ............ ... 66
C. MILES Equipment Add-On ...... ................ .... 66

AFPENTIX A The Characteristic Fundtion .............. .... 68

APPENDIX B The Meijer G-Function .... ............. .... 71

APPENDIX C Microprocessor Simulator of MILES Encoder and
High Data Rate Receiver .............. ........ 74

C.1 Transmitter and Encoder ... .......... ... 74
C.2 Receivers ...... ................. .... 83

A. Phase Locked Loop (PLL) ... ........ ... 83
B. Active Filter ..... ............. ... 84

REFERENCES ......... ......... ........................... 85

ti



I. INTRODUCTION

i The MILES system was designed and built as a tactical laser weapcn

fire simulator (LWFS). All of the mathematical analysis and experiments

performed during the Advanced Development (AD) phase were to show that

MILES would accurately simulate tactical weapon fire. The use of MILES

for long range marksmanship gunnery training will require the kill zone

of the MILES transmitter t, he very narrow and well defined. It is ti-e

purpose of this study to construct mathematical models for long range

laser propagation which will permit evaluation of the MITES equipment

for marksmanship gunnery training. The study also includes an accurate

analysis of the Binary Union decoder used in the MILES receiver. The

Binary Union decoder was designed to increase the detection probabiiity

of received MILES words under very specific fading conditions. The

currently available analysis makes several assumption' that are compatible

with the short range problem, but for long range-, ,rtre accurate analysis

is required, for if the short range (200 meters) anrl.Lsis were to be ex-

tended to the longer ranges an overly optimistic system performance results.

A. Backround:

Ir. has long bten recognized that an opt'ical beam propagating only

several meters throigh clear-air turbulenuc will result in a redistri-

bution of its energy, leading to fltctuations in the beam intensity

commonly referred to as "scintillations". The statistics associated

with these scintillations have been Lhe subject of many theoretical

and experimental investigations [l1 - [121. Much of the theoretical

work dealt with approximation schemes for the solution of the wave

equation describing the propagation of an optical beam through a



turbulent atmosphere. While these approximations have led to several

different theoretical descriptions tor the intensity fluctuations, the

lognormal model has been more commonly accepted than the others. For

propagation paths up to around 200 meters (or under conditions of weak

turbulence) the logarithm of the intensity of the distorted wave is

assumed to be normally distributed; hence the intensity itself is said

to have a lognormal distribution. A large oumber of measurements have

been made over the years which tend to support the lognormal model in

the weak turbulence regime [9] - [12].

For distances beyond 200 metcrs (or under conditions of strong

turbulence) the probability density function (pdf) associated with the

optical scintillations is still a matter of great controversy. Several

different models have been proposed for this saturation regime where

multiple scattering effects are prominent. These models range from

perturbed forms of the lognormal distribution !13], [14], to the K-

distribution 16], [9]. Although the K-distribution provides reasonably

accurate predictions for the statistical moments in part oi the satur-

ation regime, it is not theoretically applicable in areas of weak

scattering where the mean-square fluctuation <I >/<I> falls below 2

A new mathematical model is proposed here which we believe is

applicable for all propagation path lengths and conditions of turbulence.

The model takes into account both the specular component of the optical

beam and the diffuse component(s) which begin to be prominent when

3 multiple scattering effects are important. We believe the reason the

lognormal model falls to accurately describe the phenomenon in the

X saturation regime is that it ignores the diffuse component(s) of the

i beam. Owing to the presence of both of these components of the beam,

I2
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the proposed model has characteristics of the lognormal distribution

i I over short propagation patbs wh .e approaching the negative exponential

distribution as the propagation ,ath tends to infinity. Recent measure-

ments made by Parry and Pusey (9], as well as our own measurements over

propagation paths from 200 - 3000 meters, tend to support this new

mathematical model.

F



II. ATMOSPHERIC MODEL

Piptical communication systems operating in a clear-air atmosphere

are subject to many variations in atmospheric conditions. To study such

systems in general would require a very complex model of the atmosphere,

Frequently it is the case that the particular phenomenon of interest of

the optical system may be the result of only certain atmospheric varia-

tions and other atmospheric conditions can be reasonably ignored. This

appears to be the case in studying the intensity scintillations associated

with an optical beam traversing a clear-air atmosphere.

A. The Refractive-ln:ný. Structure Parameter:

One of the most significant, paramieters of the atmosphere for optical

propagation is the index of refraction. At a point r in space and

time t the index of refraction can be nathematically expressed by

n(rt) =n + nl(r,t), (2.1*.

where n <nQ(,t)> is the average value over some continuously monitote,;
time period ind n represrzt.s the random deviation of n from its average

i value.,

For optical frequency signals the refractive-index fluctuations are

caused almost exclusively by atmospheric temperature variations. These

atmospheric temperature fluctuations originate primarily from the heating

I of the earth's surface, but then these variations are further broken and

mixed by the wind which gives rise to a continuum of different scale

bizes. This leads to the refracture-index bing proportional to the

I temperature fluctuations

!4
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Since the time period associated with transmitting a laser beam

is of t z order of a few minutes or less, we will be interested in

refiactive-index fluctuations over similar time periods. Thuw -. can

assume the "frozen-in" turbulence model wherein the index fluctuat.'ns

.t a point are generated by different sized "blobs", or turbulent eddies,

swept past the point by the mean wind. With this model we need consider

only tae spatial structure of the turbulence so that (2,1) can be

rewritten as

n(j) = 0 + n (Q). (2.2)

the turbulent eddies have a lens-like effect on an optical beam

propagating through Lhe atmosphere [41, These eddies vary in size from

k a scale of only a few millimeters and called the inner scale of

turbulence, to an outer ncale denoted by L . When the propagating beam
0

is near the ground the dimensioh of L is roughly comparable with the0

beam height above the ground. These different sized eddies are respon-

sible for both diffractive and refractive effects on the optical beam,

which results in both constructive and destructive interference of the

beam. It is the interplay of refractive-optical phase shift and

diffractive-optical ray bending of the light rays that account ior the

observed amplitude fluctuations, and hence, intensity fluctuations. 4

Assuming spatial stationarity and homogeneity of the atmosphere,

wi7 define ti,e autocovariance function and spatial power s~ectrum of the

refractive-index fluctuations by 121
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B (r) = <n(r)n (r - r)>
n

= ~ 4- n(k)k sin(kr) dk (2.3,
0

anot

4n(k) B2 jB(r)r sin(kr) dr, (2.4)

which are three-dimensional •darier transforms of each other. Because of

radial symmetry, the integrals reduce to a single integral in terms of the

radial variable r and spatial wave number k.

Tartarski [11 suggested that the powe: spectrum had the same form as

the wind velocity spectrum, viz.,

(P (k) = 0.033 (2 k-I113 exp(-k 2/k 2) (2.5)

n n m

where I- = 5.92/k. The refractive-index structure parameter C2 is a

measure of the intensity of the refractive-index fluctuations (i.e., a

measure of the intensity of the turbulence). Although it is often

I referred to as the structure "constant", it typically ranges in values

from I0-17 or less, for conditions of weak turbulence, up to 10-13 or

I more when the turbulence is strong. Over short time intervals at a fixed

J distance, for a constant height of the propagation path above the ground,

it is reasonable to assume C 2 is essentially constant.
n

1 6
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Eq. (2.5) is accepted as valid only for small scales such that

k > k . For large scales such that k < k , where k = 2n/L°0 the approx-

imation is poor. A better approximation for 4 n(k) in this latter case

ii given by [7)

, n(k) = 0.033 C2 (k2 + I/L)- 11 6  exp(-k2/k , (2.6%n n1 0mn

calleo the modified von Karman spectrum.

I

I
4,3
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III. OPTICAL INTENSITY FLUCTUATIONS

In this section we describe several of the parameters of interest

in optical scintillations such as log-amplitude, log-intensity, norm-

alizea variance, and log-intensity variance. Connecting relations

between these terms and the lognormal model are discussed so as to

present a background for the math model developed in Section V.

In the absence of turbulence the field of an optical beam can be

expressed mathematically by

Ut(t)A , (3.1)
0 0

where A is the (constant) amplitude of the field, w is the angular
0

frequency of the wave, and i = /1. The incident intensity of the

undisturbed field is then

I U(W A2 . (3.2)
0 0o

After propagating a certain distance into a turbulent medium the fiel.

becomes

•iWt i4 33
U(t) = ae e (3.3)

I
where A and V represent the distorted amplitude and phase, respectively,

induced by the medium.

It is customary to define the lom-amplitude of the field by

X = log(A/Ao) (3.4)

!
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so that A = A eX. Hence, (3.3) can also be written

, U(t)AeX ei(wt + 4). (3.5)

The intensity of the field is now given by

I U(t)I 2 = A2e2X (3.6)

and we define the log-intensity of the field by

log(I/I) 2X, (3.7)

which equals twice the log-amplitude of the field.

For both plane-waves and spherical-waves the average intensity at

a point can be taken as its value in the absence of turbulence, i.e.,

<I> = 1o. (3.8;.

Under this assumption it follIows from (3.6) that

<e2X> = 1. (3.9)

The usual measure of the strength of the intensity fluctuations is the

normalized variance defined by

G2 <12> " <I>2- 1 . (3.10)

<I>2 <I>2



In terms of the log-amplitude X, this reads

l 2 = <e4 X> - 1. (3.11)

A, Probability Distribution of Log-Intensity:

Many theoretical investigations have concentrated on the random

fluctuations in the log-intensity or log-irradiance. Under conditions of

weak turbulence the log-intensity appears to satisfy a normal probability

distribution, and hence the intensity itself is said to satisfy lognormal

statistics. To theoretically see why this is so, we consider the following

mathematical model.

Let us suppose the turbulent medium to be composed of a large number of

independent slabs, oriented perpendicular to the direction of propagation of

an optical beam, and such that the thickness of each slab is large compared

with the outer scale of turbulence (see Fig. 3-1). Over short distances the

scattering cone is narrow so most of the energy of the beam remains directed

along the axis of propagation. Off-axis scattering terms are neglected.

I INDEPENDENT SLABS

INCIDENT -A, -wA1 ,'A3 , -"A '4i A0 o. -* j
3 WAVE

RECEIVER

I
I

Fig. 1-1. Multiple scattering model with weak scattering
I within each layer.

j 10

pi .0tM t 4~4';- -



The amplitude value of the wave is initially A . After passing

through the first slab the amplitude is

SA1 A° - m A° = Ao 0 - ml)
A 0 A 0m (

where mI is a "small" random proportionate. At the second slab the

amplitude becomes

A2 = AI(I - m2 ) = Ao - m)(l - i 2 )

whereas in general after n slabs, we have

n
A A in (I - m.), (3.12)

~ j=l .1

where the m.'s are assumed independent of each other, Taking the natural

logarithm of (3.12) ieads to

Ln An = Ln Ao + I Ln(l - mi), (3.13)
j=l

and if n is sufficiently large (n - m) we can invoKe the Central Limit

Theorem to declare that lim Ln A = A is normally distributed.

n-+

Since we have defined

yx = Ln(A/A) 0 Ln(I/Io), (3.14)

iim l m



it follows that X is normally distributed with mean

<X(> = ý<Ln(l/Io)>p (3.15)

and variance

[ o2 = < -2> <X> 2 . (3. m)

The pdf for X is therefore

2 2

P(X) exp-(X - <X>) 12o×}, (3.17)

and by putting 2Xy Ln(I/I), we get0

(I) 1 exp{-[Ln(I/Io) - 2<X>1°8(3 2)
o() x (3.18)

2 42na x

as the distribution for I. If we further introduce

an2 = <(Ln(I/I )) 2> - <Ln(I/ o)>22
LnI 0 0

called the log-jntensity variance, we find

2 23 29

O2 4<x 2 > -4<x2 = 42 (3.19)

Ln

1 12

- a•IH ! i ~ l m l l n

.9 n N~
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(Ln + o'nl

I1 <1> Lnlij( ) /2-n I> G exp I2
2¢nILnI 2LnI

4-

0.1
3-

H 0.2

10

1 2 3
; 1/<I>

Fig. 3-2. Normalized lognormal distribution for various values of o

13
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That is, the log-intensity variance is four times the log-amplitude

variance, Using (3.19), we now write (3. 8) in the more familiar form

of the lognormal distribution,

p(O) - ± exp{-(Ln I - v) 2/2o2 (r()LnT ' (3.20)

IL2n°LnI

where v Ln 10 + 2<X> = <Ln I> (see Fig. 3-2).

B. The Short Range Approximation:

If X is normally distributed, then

<e2X> = exp(2<X> + 2d?)

and since <e2X> = 1 (Eq. (3.9)), it follows th&t<X> = -ox

Therefore the normalized variance (3.11) leads to

G 2 = <exp(4X)> - 1

= exp(4<X> + 80 2

I from which we deduce

1 02 = exp(4o 2 ) 1 1. (3.21)

!
In view of (3.19), we also note that

2 2exP(LnI 2 (3.22)

14
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The spherical wave theory 111, 151 predicts that the log-amplitude

variance is proportional to the index of refraction structure parameter

C2 accordirn& to
n

a2 = 0.124 C2 k7 / 6 L1 1/ 6  L>>X0/A; (3.23)x n0

hence it follows that

2 = 0.496 C2  7/6 11/6
0 Lnl n k L (3.24)

which is accepted valid for all ranges. However, if we restrict the

log-intensity variance such that Lni <<I, then

exp(O2LnI 2SLnI 1 +OLnI

and thus (3.22) leads to the well-known approximation

2 C2 k7/ 6 L 1 6  (3.25)
0 LnI = 0.496 n k "

That is, under conditions of weak turbulence the variance of the intensity

and the variance of the log-intensity are approximately equal. This

same relation is no longer valid under conditions of strong turbulence

where experimental evidence supports the point of view that a2 reaches a

maximum value in the saturation regime and then decreases steadily

toward a value of unity in the limit.



IV. EXPERIMENTAL MEASUREMENTS

I Recently collected data tend to support once again the lognormal

model for intensity fluctuations over short ranges or conditions of weak

turbulence, whereas data recorded under conditions of strong turbulence

(including distances up to 3000 meters) illustrate that the mean-square

fluctuations <12>/<I>2 can be as high as 6, Neither the lognormal mooel

nor the newly developed K-distribution j6j, 19] are satisfactory for

describing the observed phenomenon very well over all ranges of the

mean-square fluctuations,

A, Experiment.

The propagation experiments whicb were conducted to verify the

mathematical modelling were carried out at Kennedy Space Center's Space

Shuttle Landing Facility. The Shuttle Landing Facility consists of a

concrete runway 16,000 feet long (4.9 kilometers) and 300 feet wide.

The area around the runway was cleared of all obstacles and vegetation

for approximately a 1000 loot r3dius. The runway had weather monitoring

stations at both ends and midway down the runway. Also, satellite

I weather pictures were received every 15 minutes of the Shuttle Landing,

Facility area along with the entire east central Florida area. This

allowed the research team to plan and carry out the experiments under

well documented conditions.

The experiments were conducted from Maich 17 to March 28, 1980.

Tests were performed in the afternoon and at night. The daytime temper-? atures averaged 75 - 6O0 F while the nighttime temperatures averaged

66 - 680 F. The humidity remained low both during the daytime and

I I nighttime experiments. The sky remained partially cloudy during the

entire set of experime~its but the winds varied considerably. During

1 16



the day, wind speeds ranged from 0 - 12 mph (0 - 5.36 m/sý, while at

night the wind was virtually still. Wind direction was usually parallel

to the direction of propagation and less than half the time perpendicu-

lar to the propagation path.

The optical beam was generated by a Spectra Physics Model 120 HeNe

laser with a wavelength of 632.8 nanometers and an inherent beam diver-

gence of about I milliradian. The laser power was 15 milliwatts with

an intensity fluctuation of less than 1% over a period of an hour. The

optical beam was used directly from the laser without optics., A tripod

was used to rigidly mount the laser transmitter at 1.4 meters above the

runway surface. The runway was extremely flat which allowed the beam

to remain at a constant height above the surfece for ranges up to about

1000 meters. At ranges beyond 1000 meters the earth's natural curvature

brought the beam to within ½ meter of the runway surface at somre inter-

mediate point of the path.

Two receiving stations were used to monitor the statistical

fluctuation of the beam intensity. One station was located at a fixed

distance of 183 meters from the transmitter while the second station

was placed at several dfferent distances down range from both the

transmitter and the first station. The short range station was ,sed

to measure the first and second statistical moments of the fluctuating

laser beam. Extensive testing at this short range station confirmed

tiuat the statistics were indeed lognormal at this range.

I The short range station consisted of a solid state PIN diode

detector, a high gain transimpedance amplifier, filter (set at 2000 Hz),

A amplifier, and a special circuit designed to compute the normalized

• I second moment of the fluctuating signal. The aperature of the detector

r17
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Fig. 4-1. System diagram of short range station.
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Fig. 4-2. System diagram of long range station.
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Fig. 4-5. Looking towards laser transmitter from 1000 meters down range.

Fig. 4-6. Look~ag towards laser transmitter from 3000 meters down range.
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was millimeter and the. detector was shielded from background light.

Periodic checking of the background light and adjustment of the shield

maintained a high signal-to-background ratio. A system diagram, of the

short range station is shown in Fig. 4-1.

At the long range station a photomultiplier detector was employed

in conjunction with appropriate amplifiers and a Digital Equipment

Corporation HINC-11 computer which digitized the signal anw calculated

the statistical moments (see Fig. 4-2). The aperature of the detector

was set at 50pm so that the detector would function as a point detector.

"j A high gain transimpedance amplifier followed ,the photomultiplier tube

(PMT), the output of which was filtered to reduce the shot noise generated

by the-signal in the PMT. The signal was then amplified prior to the A!D

converter. The A/D converter could accept signals bewteen +5 volts and

wi -5 volts. The quantization level of the A/D converter was 2.5 milli-

j jvolts. So as to obtain the lowest-quantization noise level possible,

the signal was kept at the highest possible level (without clipping).

• The sample rate by the computer of the analog signal was varied

between 100 and 4000 samples per second. Occasionally the background

light was checked by turning off the laser and then having the computer

9 sample the background light alone. The photographs in Figures 4-3

through 4-7 show the actual experimental equipment used during the test.

B. Results:

IThe analysis of the fluctuating optical signal was performed by
computing the first five statistical moments of the measured signal.

The computer was programmed to calculate and display the moments as

data was being taken. Normalized moments were calculated by dividing

the nth moment <In>,by the average value <I> raised to the 4th power,

23



In
i.e., <In>/<I>n. This normalization process allows one to discern the

inherent statistics of the scattering process independent of the power

of the laser beam and allows for a comparison of the statistics at

different ranges. The moments give information about the shape of the

iI probability density function. Comparisons of the cumulative probability

curves can be deceiving in that different cumulative curves may appear

to be very similar but yet the distributions from which they came may

differ greatly out in the "wings" of the distribution. It is these

"wings" that are of. most importance in long range propagation, and

since the moments high-light the differences between the "wings" of

various distributions, we have chosen them as a means of discriminating

" 1• between distributions rather than relying on cumulative, probability

H I A curves.

Fig. 4-8 shows a plot of the measured normalized moments <In>/<I>n
for n = 3,4,5 as a function of the normalized second moment <I2>/<I>2

It is interesting to:note that the normalized second moment takes on

I values as high as 5 and 6. However, these high values seem to be

consistent with other recently measured data 191. For a fixed value

ijdof <12>/<I>2 the data in the figure gives the appearance of being

*1 Iwidely scattered. Actually this is due to the fact that the moments

steadily increase until they reach a maximum value and then begin to

i I slowly decrease. As they decrease the moments assume values lower

than corresponding values attained during the time of increase for a

I fixed value of <I2>/<I>2

Fig. 4-8 also shows graphs of the lognormal and K-distributions

U having the same first and second moments as the data. For small values

of <I2>/<I>2 the data does indeed substantiate the lognormal model and
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| Fig. 4-8. Measured values of the normalized third, fourth and fifth
moments as compared with values expected from the lognormal
and K-distributions. The dashed line is associated with the
lognormal model and the continuous line with the K-distribution.
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the K-distribution appears, to fit the data reasonably well for larger

ii values of the normalized second' soment. However, neither distribution

provides the looping effect previously mentioned where the moments

reach a -maximum value and then decrease along different curves.

Data gathered during the nighttime hours at a distance of 3000

meters is shown in Fig. 4-9. The wind velocity was virtually zero.
ii The wide scattering of the data is attributed to the fact that the

weather conditions led to a state of nonstationary statistics.
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I
V:. A NEW THEORETICAL MODEL FOR INTENSITY FLUCTUATIONS

I Limitat:ions of the lognormal model for describing random intensity

'fluctuations have been widely recognized in the literature. Even the

nwly developed K-distribution is limited to only certain conditions-of

1 turbulence. Therefore it seems highly desirable to develop a universal

model which has characteristics of the. lognormal model under conditions

) of weak turbulence ( 2n <<l) and characteristics of the K-distribution

for conditions of strong turbulence (Gni2>>I).

I The lognormal model emerged under the hypothesis that virtually all

i Iof the energy of the optical beam is directed along the axis of propa-

gation and ignores the multiple scattering effects of the off-axis.,eddies.

1 Under conditions of strong turbulence the contributions from the off-axis

are more significant than the line-of sight contribution so that ignoring

these scattering effects can no longer be valid.

Following along similar lines as in deWolf's [41 physical model, weI believe it is reasonable to argue about the existence of two principal

ji components which contribute to the field received at a point downrahge
from the transmitter. One of these components, called the specular

Icomponent, esults from the forward scattering by the large eddies along

the propagation axis as described in the lognormal model in Section III-A.

The second component which we refer to as the diffuse component(s) arrives

at the point receiver after multiple scattering by the off-axis eddies

VIE (see Fig. 5-1). Thus the received field is described mathematically

i by

28



U(t) (Aeie +,Reif)ei t. (5.1)

specular diffuse
A component. component

Similar models have previously been suggested also by Jao and Elbaum [8]

and Fante 115).

INDEPENDENT SLABS

INCIDENT -"' 4
A0.1m~

WAVE '' " i'
RECEIVER

I SPECULAR COMPONENT SPECULAR AND
ALONE DIFFUSE COMPONENTS

(Weak Turbulence) (Strong Turbulence)

Fig. 5-1. Multiple scattering model.

L Based upon physical conisiderations it can be argued that the

amplitude A of the specular component essentially satisfies the log-

normal probability distribution and that the phase Angle 0 is uniformly

distributed. These assumptions are consistent with deWolfts model.

However, deWolf assumes that the amplitude R of the diffuse component(s)

29
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obeys a Rayleigh djstributioni Surely this must bethe case in the

limit where essentially all of the energy of the beam is contained within,

the diffuse component(s) and the number of terms contributing to this

component is large. In intermediate regimes we believe, the diffuse

component is the result of adding as small number of terms so ,that the

'1Rayleigh assumption is not justified. Therefore we choose to make the

assumption that R satisfies a generalized Rayleigh distribution which

T includes the Rayleigh distribution, among others, as i special case.

As for the specular component, the phase angle 4 is assumed uniformly

distributed'.

The generalized Rayleigh distribution, also called the m-distrl-

I bution, was first introduced by Nakagami [16]' in connection with hisf

studies of intensity distributions for rapid fading in long distance

"propagation. Much of his work was done during the 1940's and published

"in Japanese journalswhich may account for the fact that some of his

work has gone on virtually unnoticed. The m-distribution seems appro-

I priate here also in connection with our problem because of the close

smilarities of the phenomena and because it leads to the Rayleigh

distribution as a limiting case.

A. Development of the PDF:

Ii,' Assuming the received field within a region of turbulence is given

by (5.1), the intensity of the field is found to beI
SI = U(t)[ 2 = A2 + R2  + 2AR cos(O - 0). (5.2)

Although there are several approaches that could be used for calculating

the pdf for I, we do so by utilizing the Hankel transform (see Appendix A)
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I - (5.3)
p(I) ½' JzC(z)Jo(CI z)dz

C . where

C(:Z) f Jp(A)J (Az)dA fJp(R)J (Rz)dR (5.4)0 0

is a characteristic function. The function Jo(.) is the Bessel function

of the first kind of order zero ([17), pp. 355-434) and p(A) and p(R)

denote the pdfs associated with the amplitudes A and R, respectively.

Under the assumption that R satisfies the m-distribution, we have

[16] (see Fig. 5-2).

Sm 2m-1Sp(R) =2m R -mR2/b, (55)

tl 1' rP(m) b

where b = >is the average of the intensity R2 and r(.) is the gamma

function (see [17], pp. 253-294). Observe that for m 1, (5.5) reduces

to the well-known Rayleigh distribution. Thus we find

2m-1 emR /b j(zd
fp(R)Jo(RZ)dR - 2 R2 mml e J (Rz)dR

0 00* r(m)b' 0

S 1F1 (m;1;-bz2 /4m), (5.6)

where we have *used the formula ((18], p. 716)

axle-x (2- -+ )'J+ I) V F2
e J4ax)dx F 2\+I a(v+j+l)/2 r(v + 1) 1F1 2 -) (5.7)

0 3 1
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Fig. 5-2. The nlormalized rn-distribution.
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Here Fl(a;b;c) is the confluent -hypergeometric function ([17], pp.

503-536). If A is assumed to be lognormal, the first integral in (5.4)

cannot be evaluated in closed' form. We therefore resort to the power

series expansion

J ) (-I)x/22k (5.8)
0 Y (kt)2

so that
Jp(A)J (Az)dz M (-) k (z/ 2 )2k J k A p(A)dA

0 t0 (kt)2 0

*k- 2k k2lk

k 2'

where <A2 k> denotes the kth moment of A2 . Now (5.3) becomes

k <A 2k > ) 2k+1 F (m;l;-bz 2/4m)Jo(r" z)dz, (5.10)

kwt) 2 (kt(1) <A 0/ 2  ~ F 1 /mJ/zd,

or owing to the integral formula ((18], p. 873)

2p 2  22 (b) G21( Y 1, b (5.11)
F)JX(xy)dz 1 y2 p+l 23 0 v1+ p a, (0I r(a) -T- p 2,

(5.10) reduces to

_ _ _k A -(k+l) 21 m,

p(I) (_1 )k< A m ' (5.12)
k=0 (kW) r(m) 23 b k+I, m, k+1 (

SI



which we shall henceforth refer to as the G-distribution or universal

model The function (.) is a generalized function known as the
pq,,

Meijer G-function ([19], p. 206).

Although (5.12) is a representation for the pdf associated with

I intensity fluctuations, it does not lend, itself in its present form to

easy computations because of the complexity of the G-function. In

__ Appendix B we relate this particular G-function to the associated

Laguerre functions, but even so the resulting expression is stilJ, quite

ism complex. Further refinement of this pdf is called for in order to make,

it more tractable.

-- B. Theoretical Moments:

For purposes of comparing a probabilistic theoretical model with

experimental data we believe a comparison of the predicted (normalized)

• IT moments with the actual (normalized) moments provides a better criterion

for validating the model than does a comparison of the distributions

themselves or their cumulative probabilities. With few exceptions,

"11 the moments uniquely determine the distribution.

While the pdf (5.12) does not readily lend itself to direct com-

I putations for the pdf or the cumulative probability, it does lead to a

closed form expression for the momenti. t'rsd if v-e use the integral

formula ([18], p. 897)
m n

I ( o x la1,...,apl [H r (b, + P) 11 r (I-aj P)
XO Pq bj6i.b"bqdx q - - =I b~ - a + (5.13)

Jum+r J1n+l

j I we find
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<I>- JInp(I)dI
0

I - (l)k<A > fIn-k-1 G 21 (Ml- )1
k-0 (k)2' (m) G 23 b k+l, m,ý k+lr 0
n 1 2k

-'(-l) <A >- (_b\n-k ni r(in + n1 -'k) P(k - n ),(5.14)

k-O' (k1)2 r(m) (n - k)! r(-n)

i

where the series is now finite. That is, all terms such that k > n + 1

reduce to zero because Of the' uictorial (n - k)l in the denominator.

Also,

i

i r(k - n) = (_,l)k n(n -1)... (n - k +1) = (-1) n!

r(-n) (n -J1L'i
and thus (5.14) is equivalent to

(n) b nkr(m + n -k)<A 9> ,(5.15)<In> k= n-k 
"

k-0 m r(m)

Ij~ where

k l (n - k)W,,,

In order to make comparisons of the moments of various distri-

- butions they should be normalized so that the mean value is unity.

- To do so, we first set n = 1 in (5.15) to get

I <I> = b + <A2 > > b(l + r) (5.16)

"~~~ -7 -- 7777=Z- • T



LI~ 2>/b - < 2

where r <A2>/b <A2>/<R2> is the power ratio of mean intensities of

Sthe specular to diffuse components. It is also convenient to introduce

,the normalized moments [16], [20]

<R2 k> r(m + k) (5.17)
Dk <R2>k m k(m)

IL
and

2k k(k-l)/2
<A >

ak 2k - A (5.18);
ki <A2I>k '

!j i ~ where X - <A4 >/<A2 >2 . Hence we now write 4

so upon division by <I>n, we finally obtain
rk-0 0k 5.9

n ) in k a k( .9
<7. (1 + r) rk

I;
It might be of interest to note here that limiting forms of (5.19)

lead to normalized moments of either the lognormal distribution (r + o)

r or the negative exponential distribution (r ÷ 0), i.e.,
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<I>n I n1 as r 0,I ni

in agreement with previous theories. (As r + 0, we also have m I+ in

(5.17) to 6et this result.)

C. Comparison of Moments with Data:12 The normalized moments (5.19) depend upon three parameters:

(a). the reciprocal of the normalized variance of the

m-distribution denoted by mi

' I i: (b). the normalized second moment X of the lognormal

distribution, andLI I
1(c). the power ratio r of mean intensities of the specular

to diffuse components.

The three parameters m, X, r are chosen in such a way that the first two

normalized moments of I match the data identically and the third moment

is matched by so*de "best fit" criterion.

I Since only the first five normalized moments were actually measured

in the field, we separately list the corresponding theoretical moments

I as determined by (5.19),

$1 <I>
-- = I,(5.20a),

2 P 2 (5.20b)

: <I>2 (1 + r) 2

<3 23

__ j3 9i r9a 2 r2 ar3
<I--> 3 , +9J~ (5.20c)

3 <1>3 (1 +r 3 +
S I
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L 1

23 44•< +4 16 3r + 36 2 a2 r2 + 16a 3r4 + a4 r (5.20d)

<I> (1 + r) 4

2 3 4ar 5
5 P5 + 25j 4 r + r 00i 3a2r + 1001r2a3 r + 25a 4 r + asr5

<I5> - 3 .2 .+ .... ...3 ... 5 (5,.20e)

<I>5 (1 + r)

Here-we note that i a , I,

ak x ,~k-1± k - 2,3,4,5

! and

4 1k+1 a (I + k/m)pk, k = 1,2,3,4,

this last result beingderived from (5.17).

The measured normalized moments <In>/<I> for n 3,4,5 as a function

Sof the normalized second moment <12>/<Iý 2 are shown in Fig. 5-3 along

V ~with theoretical curves predicted by the present G-distribution (Eq.

(5.20a) - (5.20e)). In Fig. 4-8 the same data was displayed along with

Vi theoretical curves predicted by the l6gnormal distribution and K-

distribution.

ji Although the moments as given by Eq. (5.19) depend upon three

p parameters, we found that a reduction to one effective parameter could

be realized by utilizing empirical relations such as

S0.59x + 0.41 (5.21)

and
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I -0.396x 2 + 5.902x - 4.506, a LnI < 2 (5.22)

!'2 0 0.2375x2 + 1.4625x - 1.875, > 2
LnI

I where x <I >/.;> .That is, we found the normalized second moment

associated with the specular component varying almost linearly with the

total intensity second moment whereas a relationship involving the

normalized second moment associated with the diffuse component required

a quadratic relation which'further depended upon the value of the log-

intensity variance. The parameter m is then calculated from (5.22) and

*1 !the relation

-2 (5.23)

-LThe one remaining parameter r can therefore be expressed as a, function

T; of X, 4 2 and x by utilizing (5.20b) from which we deduce the relation
it'

2 - x +( +X- 4)x+4-X P2  (5.24)

Using the empirical relations (5.21) and (5.22) along with (5.23)

and (5.24), the variation of the intensity a2 and the variation of the
2

power ratio r'as functions of a or a are shown in Fig.'spoerLn LnI honi Fg'

5-4 and 5-5, respectively.

We should hasten to point out that the empirical relations (5.21)

and (5.22) were not arrived at by applying some regression relation in

the hopes of finding the best fit. Since the actual amount of data

available at this time is somewhat sparse, we employed visual fits'ill
40
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based upon the data that we obtained as well as us, aj data that was

earlier published by Parry and Pusey [9]. It is likely that some

modification of these relations will result when more data is available

so that a, better fit of the theoretical curves can be obtained.
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VI. BINARY UNION DECODING

The Binary Union Decoder is a decoding technique used to recognize

block codes which are transmitted through a fading channel. The MILES

system uses such a decoder in order to defeat the fading of a laser

beam signal caused by scintillation (or other scattering mechanisms).

The decoder consists of one storage register that acts like a

-- Imemory for a word. The next received word is then OR'ed bit by bit

with the word that preceded it and which was stored in the memory

register,; The result is a word which is then decoded. This technique

is designed to make up for the loss of one half of aword so long as

the same half of the word is not lout in each word transmission.

A conceptual block diagram of the decoder is shown in Fig. 6-1,

illustrating that each of the bits in the stored word is OR'ed with j

• its corresponding bit in the current incoming word. The fact that

- each bit is used twice, once when it enters the receiver and once after

i.• it has,,,subsequently been stored in memory, means that the OR'ed words

shown schematically in the right-hand column are not independent of

one another. It is precisely this dependence between the OR'ed words
L that was ignored in an earlier analysis of the decoder and thereby

lead to an overly-optimistic prediction of the MILES System performance

[211.

In this section of the report we present a detailed analysis of

the Binary Unioi, Decoder taking into account the dependence between

OR'ed woids. We consider MILES block code words with weight W and N+1

repeated word transmissions. Special cases to be considered are the

following:

-44
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Number of
I K Repeats

OR'ed words

11 12 1w " •

It

id aIH • •N .. N

ja+l,4aN+ 2I N+1,wj' '' Li. a. laN+

Fig. 6-1. Block diagram of Binary Decoder.
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Case I: All bits in, each word have equal probability p and the word

Li detection probability computed for N = 4 and N = 8. (This case

simulates the situation. wherein the statistics-of the propagation

path of the laser beam remains constant during the entire message

LI transmission.) These results are compared with the current MILES

analysis [211 where independence between OR'ed words was assumed.

S I Case II: :All bits in the first half of each word have equal probability

Sp and all bits in the second half of the word have equal probability

2 q, where q = 3p/4. (This case models the fading of, half a word

length, and since the MILES word is 3.63 milliseconds in duration,

it corresponds to the case of 1.8 milliseconds average fade time.)

Case III: All bits in the first half of each word have equal probability,

~ and this probability is the same as associated with all bits in

1 the last half of the preceding word. Thus half the word has

probability p and the other half has probability q = 3p/4. (This

case simulatesa fading of 3.63 milliseconds but only half of

L each word would be affected).

Case IV:, All biis in the first one-third of each word.have equal

probability p, all bits in the next one-third of each word have

I equal probability q, andall bits in the last one-third of each
word have equal probability r. The relationship between the

• •probabilities was chosen as q 3p/4 and r = kp. (This case

f! simulates a fade length of about 1 millisecond.)!i i
j I
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Finally, we make a comparison of the Binary Union Decoder with

LI the Simple Word Recognition Decoder. The Word Recognition Decoder gives

K •an output signal only after it has recognized the received bit pattern

as a valid word. Again we consider MILES block code words with weight

"W and N+I repeated word' transmissions. The special cases considered here

are the following:

.1 Case V: All bits in each word have equal probability p.

Case VI: All bits in the first half oif the word have equal probability

Sasep and all bits in the second half have equal probability q, where

1q = 3p/ 4 .

Case VII: One-third of the bits of eachcode word has probability p,

one-third has probability q and one-third has probability r. We

again assume q = 3p/4 and r = kp.

A. Case I - All Bits.Equal Probability:

The bits of a single OR'ed word, which wewill call Ai, are repre-

-sented by the symbol a.. where i denotes the bit number •nd j denotesij i

the repeated word number. It then follows that, for example,

a11 =a 1 1ua 2 u a

(6.1)
SO12 a, 2 u a2 2

while in general

747 •- -lj -a-,j a2,j ,
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LI -

S- aa
2j 2,j 3 ,j

ai a ua (6.2)1.3 ai+il~j

IL
where 1 S i S N, and 1 I j S W. The letter N denotes the number of unions

and thus N+l is the number of repeated words transmitted, and the letter

j W is the weight of the code word (i.e., the number of "ones"). Now if

only one good word is required for a successful decode (i.e., hit),

I J then mathematically we wish to determine the probability associated wfth

N unions of the "A's".,

N

P(AoA2u ... uAN = P(u A), (6.3)

"1 H i=l

L where each Ai denotes a word of weight W. By considering only the "ones"

and not the "zeros", we are considering only the fading loss and not the

I more general case of noise which could change a "zero" to a "one" as

well as a "one" to a "zero".

IAIf we first treat the special case of only three repeated words

'I **being transmitted, then we will be interested in-computing

LI P(A u A2 ) = P(A ) + P(A2 ) " P(A n A2 ). (6.4) 3

I II In terms of the OR'ed bits aij, the intersection in (6.4) is

AInA 2  (a11n a 12 n ... na1W) (a 2 .1 a2 2n ... n1a2 W), (6.5)

H 48
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or by regrouping,

U A1nA2 = (a nc a 2 ) n (a 12 nu2)n.. f(tan a 2w), (6.6)

zAnd hence

Li ~P(A n A) fiPa~jtvQ (6.7)

iiIf each bit a., of the received word has probability p, it follows

that the probability of each OR'ed bit a.. is
fij

P(a P(a + P(a ) P(ai,P)P(aicl1+)

P )=E1 - ( 1  )2 (6.8)

[,.and therefore the entire OR'ed word composed of the OR'ed,•bits ot j is

SP(A) d [I " (l-p)21/ W [1 (l-p)(l-p)] W/' (6.9)

for i 1,2. Also, we now see that

P(alJn a2j) P(a 1 j) + P(U 2 j) - P(OljUa 2 j)

2 [1-(l-p)2 ] - 2p-3p2+p

S(1-p)(1-p2) , (6.10)I
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and hence the union A u A- has probability1 1
LI

P(Alu A2 ) = 2L-(l-p)(l-p)j W [1-(l-p)(l1p2)] W

which can be expressed in the equivalent form

P(A 1 u A2 ) m- ' 2 W

(The symbols kare binomial coefficients defined by

=i . (6.12)

ml(k - m)!

With the above special case serving as a model, we can now gen-

eralize the results to the case when N+1 repeated words are transmitted.

Here we find, the probability of successful decoding one word out-of

Li N+1 received'is

N, N+I
P( UA) = SI -S 2 +S - ... +(1) SN (6.13)

where the S terms are

S P (A.dN

• S2 =•N:P(A.n A.)= N)[,-(1-p)(1-p2)]W

-ioj

: S C nA nAk (N)[i -(i-p)(l-p3) W
i#jik
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Fig 6-.Poaiiyo eeto uvsfrtecs*hnalbt

~it8

hv eu Fprobability of Netect o rN curves for

each N corresponds to the previous MILES analysis given by
Eq. (6.15) and the lower curv.p for each N corresponds to the

• present analysis based on Eq. (6.14).
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1$ N
- Sm P(Alp ... niAk -N )[1-(1-p)(1-p m)]W.

- i,... ,k=l

Sj1 i#... Ok m terms

Hence the probability we seek is given by

•,• ( U 1) =- [l(1.(1p)(1.pm)]
P( UA) (-l)n'" (N)i(~)iP'3~ (6. 14)

V The above approach to the analysis is an accurate accounting of the

Biary Union Decoder. It might be pointed out that if the unioned words,

Awere assumed independent, as is the case in the current MILES

analysis [21], the probability of a successful decode would be

j i N (P2 W0 1r U• A1  1 -• - [- - (1-p) ÷• 1N (15

where N+1 is again the number of repeated words and W is the weight of

the word. A comparison of the probabilities generated by Eq.'s (6.14)

jj and (6.15) is shown in Fig. 6-2. Here we see that the probabilities

resulting from Eq. (6.15) are much higher than corresponding proba-

11 lities given by Eq. (6.14),, which are a direct result of ignoring the

dependence of the unioned words A..

B. Case II - Half Word Fade Time

'1 t If we assume a. . has probability p for J = I...,W/2 and proba-

bility q for j = W/2 + 1,...,W, then Eq. (6.7) becomes
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Fig. 6-3. Probability of detection curves (lower two) for the case
when the first half word has probabilitypanthseodal

ilhas probability q, and N - 4 or N =8 (see Eq. (6.19)). The
upper two curves correspond to thewspecial case when all bits
have equal probability p as given by Eq. (6.14)0
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W/2 W
P(AIn A2 ) =1lI KP(a1 j" a2a) 1 P(aln a2.). (6,16)

Using the result (6.10), ,we find

(An A2 [1 (l-p)(-p)2)] W/2 [1 - (l-q)(1-q2 )]:W/ 2 , (6.17)

P and therefore it follows that

SP(AuA 2 ) = (-I)m+l (2)1 - (i-p)(-p m)] [i - (1l-q)(1-q))) 2 (6.18)

H IGeneralizing Eq. (6.18), we have

I N N
'P( U A1U = (-m+1 (.N)1[1-(1-p)(1-pm)][1-(1-q)(I-qm)]IW/ 2. (6.19)

. i-i

Eq. (6.19) is plotted in Fig. 6-3 for the special case when the

SL bit probabilities satisfy q 3p/ 4 and N 4 or N 8. Corresponding

curves for the case when all bits have probability p (see Eq. (6.14))

i Lare illustrated here for comparison purposes. The relative bit proba-

'bilities chosen were picked only as typical of fading conditions and

I also to demonstrate the effect of the Binary Union on the word detection

probability.

C. Case III- Full Word Fade Time - Half Word Lost:

Here we assume P(al j)=p, j = 1,...,W/2 and P(aj) q,

S=W/2 +1,...,W. Then P(a 2 ) j 1,...,W/2 and P(a 2 ,j) p,

j = W/2 +1,...,W, and so on where every other word has the same proba-

I ibilities assigned to each bit.
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For three repeated words., we ,must calculate

P(A uA2) = P(A 1 ) + P(A2 ) - P(A 1 n A2 ), (6.20)

where

W/2 W
P(A 1)= II P(ofn) H (l

= (p + q pq)W/ 2  (q+ p qp)W/ 2

(=,,I (1-q1(1-p)] W, (.1

V and likewise

P(A 2) = [1 - (1-q)(1-p)] . (6.22')

Also, we find that

W/2
n .P(A 1 A2 ) = ln P(alju 2 .) n1 p a

j=1r

[2(p+q-pq)-(2p+q-2pq-p 2+p2q)] W/2 [12(p+q.pq).(2q+p-.2pq q2 +pq.,] W/2

[ - (1-q)(1-p 2 )] W/2 1 - 2 W/2 (6.23)

IA (1-p)5(1-q
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Fig. 6-4. Probability of detection curves for the case when the first

half of every other word has probability p and the second half
has probability q, alternated with those words where the first
half has probability q and the second half has probability p, and
N = 4 or N = 8 (see Eq. (6.25)). The dashed curve for each N
corresponds to the probability of detection when each word has
the same p,q probability assignment as the previous word (see
Eq. (6.19)).
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Fig. 6-5. Probability of detection curves for the case when the first

Sone-third of the word has probability p, the next one-third has
! probability q, and the last one-third has probability r', where

q-3p/4 and r-Ip, and N = 4 or N = 8 (see Eq. (6.26)). The upper

two curves correspond to the special case when all bits have
•! equal probability p as given by Eq. (6.14)),.
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Therefore, Eq. (6.20) now takes the form

2
L] P (Al A) Y(-1)m~l2 (ýl--(l-q)(1-p m  W/2, (6.24)

and generalizing to Nil repeated words yields

NP U1A (I-q)(1-Pm, [1 _ ( 1 _p) ( 1.qmll W/2. (6.25)

Probability of detection curves using Eq. (6.25) for the special

case when q = 3p/4 and N = 4 or N = 8.are shown in Fig. 6-4. The upper

curves for each N illustrate similar probabilities of detection when

ii -each word has the same probabilities p and q as determined by Eq. (6.19),

K rather than every other word as is the Case of present interest.

D. Case IV - Third of a Word Faded:

Finally we consider when P(a.. .) p, j = !,...,W/3, P(a..) q,

j W/3+1,...,2W/3, and P(a ) = r for j 2W/3+l,...,W. Following the

Lisame procedure as outlined in Section B, we find that

iN N
P(UA ) =(-I)m+ _p [-(l-q)(l-q [l-(l-r)(1-r. (6.26)+!izi m=i m P P r ]

Probability of, detection curves for this case are illustrated in

-Fig. 6-5 for the special case when q =3p/4 and r h p. Again these

values represent typical probabilities.

E. Case V-All Bits Equal Probability:

If we let the probability of detection of a single bit be p, the

1 ' 58
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I word detection probability for a word of weight W is

U ~W

I word P(6.27)
Ii

T the probability of missing a word is

H P *p (6.20,

and the probability of missing every one of N+1 repeatedly transmitted

-- words is

~~( A, 1p)+ (6.30)

F. Case VI -One Half Word Fade:

K uppose p is the probability of detecting half of the bits in a

Iword and q is the probability of detecting the second half of the bits
1in the same word. The probability of detecting the word is

i/i ~word ~W/2 qW/2,(.)

Iand hence the probýAbility of detecting one word-in N+1 repeated trans-
11 missions is

1 - (pqW/2] N+1 (.2

a'1
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G. Case VII - One-Third' of a Word Faded'

Let the probability of:each'third of a word be p, q, and r,

respectively. Following the analysis in Section F, we deduce that the

probability of detecting a single word-when N+l are transmitted is

~1W/3]N+
PD =I - [1 - (pqr) N+. (6.33).

Fig. 6-6 shows the plots of Eq.'s (6.30), (6.32) and:(6.33) where

we have chosen q = 3p/4 and r =kp. These choices represent typical

fading depths and rates as discussed earlier. Comparison of the results

here for the Word Recognition Decoder and those in previous secticns

for the Binary Union Decoder clearly reveals the effectiveness of the

Binary Union-Decoder. Observe, however, that the Binary Union Decoder

is most effective by comparison with the Word Recognition Decoder when

all bits have equal probability.

Li
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0 - All bits equal prob. p
Se - Bit prob.=p, q where q- -- p .
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SFig. 6-6. Probability ofdtcincurves frthe Word Recognition

S~Decoder corresponding to either N = 4 or N = 8. The upper ýwo
curves correspond to Eq. (6.30) where all bits have equal proba-
bility, the middle two curves correspond to that case when half

the received word has probability p and half has probability q
I. J (Eq. (6.32)), and the lower two curves correspond to that case .

• ~when the word probability is split into thirds (Eq. (6.33)).
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VII. DiSCUSSION

Theepurpose of this study was to evaluate the potential for using

MILES equipment for long range marksmanship gunnery training. The

L •+current MILES equipment was designed as a tactical engagement laser

weapon fire simulator. In the development of the system detailed

analysis was performed to, predict the optical communication process.

K The Binary Union Decoder was designed to increase the detection proba-

bility of received MILES words under very specific fading conditions.

That analysis was performed assuming short range propagation path and

A weak scattering in the path. Also, simplifications were~made in the

analysis of the MILES decoder circuit which-are valid for the short

Hi range problem but which proved unreliable and misleading for the long

range problem. That is, if the short range (200 meters) anaf sis is

extended to the longer ranges the probability of detection curves that

result are overly optimistic.

In order to definitively evaluate the MILES potential for long

Srange marksmanship gunnery training,, the following tasks are required:

I. Evaluate currently available mathematical models and alter

f Lor create new models for long range optical propagation.

- 2. Experimentally evaluate MILES long range detection proba-

J bility (kill probability).

1 1.3. Develop appropriate and necessary add-ons for MILES

equipment which will allow it to accurately simulate long

I range gun firing for marksmanship training.

U A. Completed Modelling Tasks:

SUDuring the current study we have completed the followingaspects

of the mathematical modelling:

62



S(a). Experimentally determined, in well documented field

experiments, conducted at*NASA's KennedySpace Center,

- Tthat the Lognormal Statistical Model for scintillation

scattering is valid only for ratges less than 200 meters

~ ] (or weak turbulence conditions).

(b). The field experiments also proved that the variance cf the

I. statistically fluctuating optical signal at long ranges

does not saturate at the low values (0.7) used in the MILES

analysis. The actual variance at long ranges may be as,

f high as 4 or 5.

(c). The K-distribution was validated as a reasonable,,model for

long ranges although it is not theoretically applicable

for short ranges when the normalized variance is less than

unity.

"(d). The cumulative fading (or cumulative distribution) was

computed for the K-distribution and for the lognormal

distribution using the same variance in both cases (see

Fig. 7-1). The lognormal model predicts lower fading

B at long ranges as compared with the K-distribution leading

, [to a more optimistic view of system performance.

(e). A universal statistical 'model, called the G-distribution,

was developed that would accurately predict scattering

effects at both short range and long range. Due to

complexities of the mathematical functional form of the

"G-distribution, only the statistical moments have been

computed with the distribution at this time. Further

j analysis and refinement of this distribution is required

j 1. "63
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BIT PROB =p, q where q =
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to cast it into-a form that will be propitious to the$1
computation-of cumulative fading.

. lIn addition to the mathematical modelling of the intensity fluc-

i Utuations of the optical beam, an analysis was performed on the Binary

' • Union.Decoder employed in the MILES system. Although the current

U analysis was reasonably accuracy for short ranges [21], it leads to

Ii a considerably over-optimistic performance of the MILES system for

longer ranges. The analysis performed in this study for the decoder

1 made use of the lognormal distribution as well as the K-distribution

to illustrate the differences in the predicted performance of MILES

at long ranges for both statistical models (see Fig. 7-2).Il

B. Evaluation of MILES Equipment'

I As of the completion of this portion of the study, there has been

no MILES equipment available for testing. If and when the equipmentI
becomes available, it will be taken to NASA's Space Shuttle Runway for

the' purpose of conducting experiments in the hopes of determining

detection (kill) probability zones as a function of range.

. C. MILES Equipment Add-On:

The major portion of the marksmanship study concerning MILES

I hardware add-ons was conducted by Code N-73 of NTEC's research divi-

U sion. The UCF research team worked with Code N-73 in the early stages

U Iof the study to help develop add-on hardware concepts that would be

MILES compatible and allow MILES to be used in marksmanship gunnery

• |training. The concepts that evolved from the preliminary discussions

.,were:
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1. Phase locked loop.(PLL) receiver.

1 2. Digital filter (DF) receiver.

3. Continuous wave (CW) laser, transmitter pulsed at high rate.

Since the MILES transmitters operate at a basic transmission rate

f of 3 khz, the high pulse rate CW laser could be configured so as to

transmit 20 pulses during the slot time for one MILES bit pulse. The

Sreceivers would then lock onto the 20 pulses and output one pulse at

the MILES bit pulse period. Hence the proposed transmitter and

]• receiver would appear as standard MILES transmitter and receiver to

I ,the present MILES encoder and decoder electronic systems. In order to

drive the transmitter and receiver developed by Code N-73 of NTEC,

the UCF research team developed the software so that the microprocessor

system PROMPT 80 could be used as MILES encoder. The MILES decoder

system can be simulated using the MINC-11 computer. Appendix C lists

the microprocessor program for simulating the MILES encoder.

The above techniques were being developed simultaneously and in

J •conjunction with the UCF study of the mathematical modelling. These

techniques are well known in communication theory and appear to be

very promising as techniques to allow MILES to be used for marksman-

ship gunnery training.
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APPENDIX A

Ii The Characteristic Function

I Let us write the time-independent portion of the field as

E - Ae19 + Re E + E (A-1)

1 I Since E1 and E2 are complex functions, we define their characteristic
a functions as two-dimensional Fourier transforms. For El, this becomes

fiu.AcosQ vsniC1 (UV)- s+ v p(A,@) d~dA, (A-2)
0 0

where p(Aj9) is the joint density function of A and 9. If we assume

4 that A and 9 are independent, and further that 9 is uniformly dis-

I tirbuted, then

p(A,G) = p(A)p(9) =-- p(A)

and (A-2) can be written in the form

2wr

"c1(uV) I 2 p(A) 1 eiAzcos(9 - a) dO dA, (A-3)

where

'• •'ii27 2

~ I and

ij a arctan(v/u).

Using the integral formula ([117], p. 360)

21r
Tr'1 eiXCCS4 dO J(x) (A-4)

I o
it becomes clear that C1  depends only upon the radial variable z, i.e.,

C (zp(A)Jo(Az) dA, (A-5)

S ! 0
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'which we recognize as being. equivalent to the Hankel transform of p(A)/A.

aUnder similar assumptions for R and , the characteristic function for

E 2 leads to

P2(z) •op(R)J°0(Rz) dR ,(A-6)

and therefore the characteristic function for - E + E( Can be expressed

in the product form

00 W
C(z) - CI(Z)C2 (z) - p(A)JJ(Az)dA p(R)J 0 (Rz)dR. (A-7)

The pdf for E is defined as the two-dimensional Fourier transform
4 of C(z) given by

p(E) e e-UX -vy C(z) du dv, (A-8)

where
+•' IX =Re(E) -A cos 0 + R cps,

and

- Im(E) - A sinQ + R sin 4.

Since the characteristic function is formulated in terms of the radial variable

S iz it is convenient to write the exponential function in (A-8) in terms of

I polar coordinates. Thus we write

K uX+vY IElz cos(,- a)

where

I IEI + y

and

= arctan(Y/X).

}'jI3 Converting the double integral in (A-8) to polar coordinates (z,a) it follows

that

p(E) .1 zC(z)eiEz cos( -a) de-dz (A-9)
41 42 f 0S~0 0

which in view' of (A-4) further reduces to
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'I
p(E) = •-j zC(z)J 0 (IEIz) dz (A-O)

I• 1ow since

I p(E) = p(lEI)p(*) =•p(IEI),

S]i we see that

p(I•E) - J zC(Z)Jo(E•z) dz, (A-11)10
and finally, by making the transformation I = 2EI2, we obtain the pdf

I for the intensity I,
0o

II p(I) f ZC(Z)Jo(VZ)dz. (A-12)
0

S11
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APPENDIX B

The Meijer G-Function

In Section VA we developed the expression

- 1 lk<A k> -( o 21 til I Bi

0k- (kl) 2 r(m) 2 3 b k+l, m, k+l

as the pdf associated with the intensity fluctuations of an optical beam
21

propagating through clear-air turbulence. By G2 3 (.), we mean one member of

the generalized function known as the Meijer G-function [19]. It is our

intent here to relate this function to more standard functions used in21
engineering applications. In particular, we will show that G23 (.) is

related to the generalized Laguerre fuhctions.

Using the relations ([19], vol. 1, p. 209 and p. 216)
S a, a I=U1 a)

21 G ( (B-2)
2 3 ( b, c, ) 1 b, c

and

a

GI x ) (b+cl e- W, (B-3)
l b, cIiI

we can relate a particular G2(.) function to the Whittaker functions

W,(.). Thenemploying the relation ([19]. vol. 2, p. 432)

W (x) = (-)n ni x+'• L (X2 ) ("B-4)-+n , n x (B-4)

where L is the generalized Laguerre function, we have one special

case of interest

21, a-bG2= (-)ba (b - a)l xc e-x L(c-b (x). (B-5)

Sb, c, ca b-a
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The G-function in (B-i) is more general than that in, (B-5). There-

fore in order to utilize (B-5) we need to develop an appropriate recurrence-

type formula which relates the more general G-function to those -of the specific

form in (B-5). Such a recurrence formula can be derived by making use of the

relation 21~~~nl 1i ~, "2

G" (x (k+j -n) G 2 x n1 l( i623 n k+j m, k+i2 k+j, m, k+l 'k+j+lm,k+l

*1 * hich iss-a-:special case of Eq. (11), p. 209, vol. 1, [193. Starting with

ix - 1. and n - 1~, repeated application of (B-6) yields
xj12,1 2,

-,21 x 1,k 21 -2I • •'- k+l, ~k+l \[~ ~~+/ G3 k2mkl

!ii~ - klk+l~l I $Mk+,mkl /

k(k-1)G21 (x1 (xJ+,nkl
2 G 23( Ik+3,m,k+I)

while In general it can be shown that

i I Recalling (B-5), this last result leads to

• G23kx~ , m, 1) =0 lm~ -xk 2k ,mk+l) (B-7)

221m, k+l) J2

'i ' and the substitution of this expression with x =f ml/b into (B-l) gives us

e• mpI/b=m •. • (2k-•i)kA 2k> -k L(i-2k+i-l)(ml/b). B9

:• • r(m)bm k=:0 1-0 it [(k-j) ! ] kJ B9
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It may be of interest to consider ,here the separate case when

m 1 1 since (B-9) reduces to a result previously obtained through

1 other means. From the relation ([18, p. 1038)

L (x) - (I)n xnl/n,,

n

we find

kk (2k-i)t '-2k-- -k k 2'(k-J

J-0 j![(k-J),] 2  J2k-0 J !'[(k-j)1

and by setting k - j = n,

-k 1 k - ! (-2k___j_ (1) k k ) (I/b)n
1( 2k-)!L 2k-Tj)(I/b) n i~() 'i
j-O jI [(k-J)] 2  2k-J bk kI n-0

= L (1

where Lk(.) is the kth Laguerre polynomial. Thus, by setting m 1 1

1 in (B-9) and using the above relation, we see that (B-9) reduces to

i , i -I~~/b ,(-l)k<Ak> L~/)(-O

'• •'k-0 bk kI

which is in agreement with Eq. (19) in [8] for I E and b - 2 2b4
SThat isto say, (B-10) is the pdf that would result under the assumption

that the diffuse component(s) have an amplitude R that is Rayleigh

distributed rather than the more general m-distribution as assumed for

1 our model leading to (B-9).
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APPENDIX C

I Mircoprocessor Simulator

and High Data Rate Receiver

C.1 Transmitter and Encoder:

"In-order to conduct experiments on the high data concepts for

MILES add-on's it is required that the MILES encoder-transmitter be

I- simulated. The encoder transmitter design required that the system

be as flexible as possible. This design had to allow for a variety

of experiments on different types of modulation and block coding

r T schemes. Because. of the diversity of digital block codes, it was

decided that a general purpose microprocessor computer should be used'

to generate these codes. The different proposed concepts also required

that the transmitter be able to transmit block codes either by Frequency
Shift Keying (FSK) or by On-Off Keying (OOK) modulation formats.

The use of a computer for generating block codes requires the

computer to interface with a teletype and to have an I/O iport that is

easily accessible. The computer used for this task was the Prompt

4 80, an Intel 8080 (CPU) computer, which is capable of driving the

I inecessary teletype and has an easily accessible I/O port. The Prompt 80

is limited to 1K of R.A.M. memory, but because it,doesn't have an on-board

j assembler, programs must be hand-assembled and keyed in by hand via the

front panel keyboard.

The code generation program had to produce block codes that were

•' *MILES compatible. The MILES block codes consist of 32 different 11-bit

words. These words are sent at a bit rate of 333 p sec per bit. Each

word is then repeated and re-transmitted a specified number of times.

For the Dragon missle, the Tow missle and the Viper, a special subroutine

4 ~ 174
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was needed. To reduce the number of program subroutines required,

the number of repeats of the word transmission was entered Via the
teletypOe. A Print subroutine, an ASCII binary-to-binary subroutine,

an ASCII decimal-to-binary subroutine, and an houtput subroutine were

the major subroutines written. The Print subroutine printed the messages

I on the teletype. The ASCii binar-to-binar subroutine and the ASCII

+: decimal-to-binary subroutine were two required conversion routines. The

ASCII binary-to-binary subroutine was used to enter the l -bit code word

while the ASCII decimal-to-binary subroutine was used to enter the number:1,+
of times the code would be repeated. The maximum repetion of the code

• was set at,99. The output subroutine serially clocked the 11-bit code

' Twords bit by bit at a rate of 333 p sec per bit. The program listing

is given in Table C-1.

4 • The output of the computer was used to control the modulator

which in turn was used for the two different modulating formats (FSK

and OOK). The circuit developed allowed for both methods to be utilized

~ •with a minimum number of components (see Fig. C-I), and switches from

FSK to 00K by the throw of a switch. The modulator circuit performs

~ j in the following way. The flip-flop and nand gates 1 and 2 are used

to divide the input carrier's frequency by two. These three logic

i Idevices allow the carrier's frequency to be divided by two and yet be

1 I independent of the carrier's pulse width (minimum of 60 nsec pulse

width). With the switch closed, there is no output from nand gate

2 and hence its output remains low (OV). The computer code controls

which carrier signal is allowed at the output of nand gate 6; this is

I" accomplished with nand gates J and 5. If the computer output is low

t: Cor), a high (+5V) appears at the input to nand gate 3 and a low (OV)
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appears at the input to nand gate 5. A high (+5V) at the input to

nand gate 3 allows the carrier (with frequency,,divided by two) to

be :present at the output. If the ,computer code is high (+5V),

the input to nand gate 3 is low (6V) And the input to nand gate 5

is high (+5V). Again this permits- the carrier (with frequency divided A

by one) to be present at the output. The result is FSK modulation.

A ; . If the switch is closed, the circuit operates as described above

except when the cof.puter code is low (OV). With the switch, closed

~ there is no output from the modulator when the computer output is

low (OV).which .esults in OOK modulation. The output of the-modulator

Ais iheih fed to the driver circuitry-which drives the laser diode. The

laser is then pulsed at the carrier frequency or carrier frequency

divided by two depending upon the state of the computer output and the

= •modulator switch position.
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TABLE C-1

ýICROPROCESSOR 8080 PROGR FOR-CONTROLLINfC

TRANSMITTER TO TRANSMIT MILES CODE .4
ADDRESS ASSEMBLY OP CODE,

[ 3DO0 Start LXI SP, d3CFQ 31F03C

3D03 LXI HL, #MES1 21DO3E

SI3D06 CALL OUT C0003E
3D09 MVI D, #9 1609

3Do8 HVI, It, #0 0600

3DOD Start 1: DCR D 15

3DOE. JZ Start 2 CA773D

1 3D1I .CALL IBC2 CD2B3E

3D14 .JMP Start 1 C30D3D

3D17 Start 2:MOV E,B 58

3D18 MVI B, #0 0600

M3DA. MVI D, #4 1604

3DIC Start 3: DCR D 15

3DD JZ Start 4, CA263D

' 3D20 CALL IIBC2 CD2B3E

3D23 JHP Start 3 C31C3D

3D26 Start 4: LXI IlL, #Temp 1 21F13C

IV 3D29 POV M,E 73

M1UA INX H,L 23

i 3D2B MOA MTB 70

3D2C Start 5: LXI HL, #MES2 21033F.

S3D2F CALL OUT CDO037
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ii ADDRESS ASSEMBLY OP CODE

3D32 HVI E, 00 IEO0

3D34 CAL DECB CD333E

1 3D37 LXI #Temp 3 21F33C

3D3A MOV M,E 73

3D3B Start 6:: LXI HIL, MES3 21313F

M 3D3E CALL OUT CDO03E

3D41 CALL .IN CDOC3E

l 3D44 CPI #53 FE53

* 3D46 JNZ Start 6 C2003D

3D49 CALL SHIFT CD7D3E

K 1 3D4C CALL OUT'1 CD593E

3D4F LXI- HL, #MES4 21543F

• ]D52 CALL. OUT CDO03E

ii 3D55 JHP Start C3003D

l 3EO0 OUT: MOV A,M 7E

A 3E01 CPI #00 FEoo

S3E03 RZ C8

I I3E04 IIOV C,A 4FY

3E05 CALL 07FA CDFA07

3E08 INX HL 23

3E09 JMP OUT C3003E

"" 3EOC IN: CALL 0729 CD2907

3E01 MOV C,A 4F

M3E10 CALL 07FA CDFA07

S3E13 ANI #7F E67F
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ADDRESS ASSEMBLY OP CODE

3E15 RET C9,

3E16 IBC: CALL IN CDOC3E

3E19 CPI #4D FE49

; 3EiB JZ ItMiss CAOO3D,

3EME CPI #32 FE32

3E20 JNC #Start 'D2003D

3E23 CPI #30 FE30

3E25 JC #Start DAOO3D

T 3E28 ANI #1 E601

3E2A 'RET C9'

3E2B IBC2: CALL IBC CD163E

3E2E RAR IF

3E2F MOV A,B 78

"3E30 RAL

3E31 MOV B,A 47

4 3E32 RET C9

3E33 DECB: MVI D, #2 1602-

.: 3E35 PUSH DE D5

j 3E36 LXI, D',O 110000'

3E39 LOOP: CALL [N CDOC3E *

3E3C CPI #3A FE3A

3E3E JNC Start 5 D22C3D

3E41 CPI #30 FE30

3E43 JC Start 5 DA2C3D

3E46 ANI #OF E60F

1 80
A . .. . ..



ADDRESS ASSEMBLY OP CODE

3E48 ADDE 83

f 3E49 NOV E,A 5F

A34A POP`B,C Cl

j 3E4B DCRB 05

3E4C RZ C8

If 3E4D, PUSH B CS

3E4E XCHG EB

S3E4F DAD H,,L 29

3E50 PUSH H,L E5

3E51 DAD H,L 29

A52 DAD H,L 29

3E53 POP B,C Cl

3E54 DADY B,C 09

S3E55. XCHG B

"3E56 JMP LOOP C3393E

3E59 OUT 1: LX1 HL, Temp 1 21F33C

3E5C mOV CM 4E

3E5D LULD Temp 1 2AF13C

S . 3E60 XCHG EB

3E61 OUT 2: MOV HýE 63

S f3E62 MOV L,D 6A

3E63 MiVI B, #IB 060B

AE65 MOV A,H 7C

3E66 ANI #80 E680

3E68 RAL 17

81
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#1

'ADDRESS ASSEMBLY OP CODE

3E69 RAL 17

41! 3E6A OUT E8 D3E8

3E6C DAD HL 29

3E6D CALL DELAY CD873E

3E70 MVI A,00 3E00

I * 3E72 DCR B 05

3E73 JNZ OUT 3 C2653E

A 376 'OUT E8 D3EB

1 3E78 DCRC OD

3E79 JNZ OUT 2 C2613E

A 3E7C RET C9
41

3E7D SHIFT: LX1 HL, Temp 2 21F23C

k 3E80 MOV AM 7E

3E81 RAR IF

3E82 RAR iF

"3E83 RAR IF
3E84 RAV IF

3E85 NOV MA 77

3E86 RET C9

3E87 DELAY: HVI A, #26 3E14

S3E89 DELAY 1: DCR A 3D

3E8A JNZ DELAY C2893E

I 3E8D 'INC A 3C

3E83 INC A 3C

3EgF MVI A, #14 3E14

S I 3E91 RET C9

f
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ADDRESS ASSEMBLY OP CODE

3EDO Message 1: /CR IF Enter 11 Bit Character
Code or M For Missiles? tCR IF/

k 3F03 Message 2: /CR LF Enter The Number of Times
To Repeat Code? CR LF/

j 3F31 Message 3: /CR LF Press S To Start Trans-
mission. CR LF/

*iI3FS4 Message 4: ICR 'LF Code Has Been Transmitted.
CR LF/

TABLE C-2
I[ SYMBOL TABLEMES1 = 3EDO TEIP 1 = 3CF1

MES 2 = 3F03 TEMP 2 3CF2
MES,3 = 3F31 TEMP 3 = 3CF3
MIES 4 = 3F54 SHIFT = 3E7D

F, • START = 3DOO IBO = 3E16
START I = 3DOD IBC 2 = 3E2B
START 2 " 3D17 DECB = 3E33

f tit START 3 - 3DIC LOOP = 3E39
START 4 = 3D26 OUT 1 = 3E59

j, START 5 3D2C OUT2 = 3E61
+++ • START 6 = 3D3B OUT3 = 3E65

OUT 3E00 DELAY = 3E87
DELAY 1 = 3E88
NOTE 1: 0729 is the-address, for the Prompt 80's input subroutine.

(input one ASCII character)

NOTE 2: 07FA is the address for the Prompt -80's output subroutine.•+• +• (output one ASCII character)

833
++++ I

!it

1- 83+ +++ . . +-+.++ +•+,.. -++++ .+:J+'
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Fig. C-2. Circuit connections for PLL chip.
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Fig. C-3. Output waveforms when PLL is locked onto signal and when itI [is free-running.
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In order to check the computer program the Tektronix 7704,Digital

Processing Oscilloscope and the Hewlett Packard 5333A frequency counter

were used. To verify the program a code word of 10000000000 was entered

and repeated indefinitely, which corresponded to a frequency of 273 Hz.

The first bit was hightfor 332 V sec leading to a corresponding word

frequency of 271.1 Hz. This meant there was an error of 0.6% between

the MILES and Prompt 80 code generators.

C.-2 Receivers:

A. Phase Locked Loop (PPL):

k A phase locked loop is an electronic feedback serve loop con-

sisting of a phase detector, a low pass filter and a voltage controlled

oscillator. The controlled phase of the oscillator makes this system

Scapable of tracking and locking onto a received periodic signal. Even

though the signal-to-noise ratio is very small, and thus almost lost in

noise, the phase locked loop can lock-in on only a few cycles. Laboratory

experiments with the'565 PLL chip is still one of the most versatile in

many applications even though it is several years old. It has a bandwidth

of 500 KHz, a center frequency stability of 1200 PPM/ 0 C and a negligible

frequency shift with drift of the supply voltage. A circuit diagram for

the PLL chip used is shown in Fig. C-2. In the absenre of signal, the

VCO is free running since its frequency is determined by external compon-

ents. Fig. C-3 shows the output of the PLL when the circuit is locked

onto the received signal and also when there is no signal present. A

filter follows the PLL in order to eliminate the free running PLL oscil-

lator signal. The particular filter used in the laboratory experiments

is shown in Fig. C-4. This blocking filter is followed by a comparator

so as. to return to an appropriate digital form of the signal. An activeII 85
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311

Fig. C-4. Filter used on output of PLL to allow modulated MILES signal

- 1 to pass and block the free-running signal under the non-locked
condition.
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I. Fig. C-5. Active filter used in receiver to detect presence of high-
p•ulse-rate modulated MILES codes.
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filter could be used in place of the three stage passive filter shown

•: in Fig. C-4.

B. Active Filter:

The Active Filter (AF) used for laboratory comparison with the

SPLL is shown in Fig. C-S. The gain of the op-amps was 10 and the Q

I -was 10. The laboratory experiments made clear that a PLL is preferred

to the AF for the following reasons:

I 1. The PLL reached lock-in in fewer pulses than the AF.

i4 IiI 2. The;PLL performed, over a greater range of pulse rate drifting&

[ than did the AF.

IEven with high performanre sop-amps in the AF, laboratory results
suggested that the P!L performs more effectively.

I8I
~!

<I
! :!I
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